Titan’s past and future: 3D modeling of a pure nitrogen atmosphere and geological implications
نویسندگان
چکیده
Several clues indicate that Titan’s atmosphere has been depleted in methane during some period of its history, possibly as recently as 0.5-1 billion years ago. It could also happen in the future. Under these conditions, the atmosphere becomes only composed of nitrogen with a range of temperature and pressure allowing liquid or solid nitrogen to condense. Here, we explore these exotic climates throughout Titan’s history with a 3D Global Climate Model (GCM) including the nitrogen cycle and the radiative effect of nitrogen clouds. We show that for the last billion years, only small polar nitrogen lakes should have formed. Yet, before 1 Ga, a significant part of the atmosphere could have condensed, forming deep nitrogen polar seas, which could have flowed and flooded the equatorial regions. Alternatively, nitrogen could be frozen on the surface like on Triton, but this would require an initial surface albedo higher than 0.65 at 4 Ga. Such a state could be stable even today if nitrogen ice albedo is higher than this value. According to our model, nitrogen flows and rain may have been efficient to erode the surface. Thus, we can speculate that a paleo-nitrogen cycle may explain the erosion and the age of Titan’s surface, and may have produced some of the present valley networks and shorelines. Moreover, by diffusion of liquid nitrogen in the crust, a paleo-nitrogen cycle could be responsible of the flattening of the polar regions and be at the origin of the methane outgassing on Titan.
منابع مشابه
The Nitrogen Chemistry of Titan’s Upper Atmosphere Revealed
Titan’s atmosphere is unique because dissociation of N2 and CH4, the primary atmospheric constituents, provides the H, C, and N atoms necessary for the synthesis of complex organic molecules. The first steps in the synthesis of organic molecules occur in the upper atmosphere where energetic photons and electrons dissociate N2 and CH 4. We determine the abundance of a suite of nitrogen-bearing m...
متن کاملTitan’s Tropical Storms in an Evolving Atmosphere
The Huygens probe landed in a damp lake bed fed by fluvial channels, indicative of past rainfall. Such washes, interspersed with vast dunes, are typical of Titan’s tropical landscape. Yet, Cassini-Huygens measurements reveal a highly stable tropical atmosphere devoid of deep convective storms, and the formation of washes in dune fields is not understood. Here we examine the effects of seasonal ...
متن کاملGeostatistical and multi-fractal modeling of geological and geophysical characteristics in Ghalandar Skarn-Porphyry Cu Deposit, Iran
This work aims at figuring out the spatial relationships between the geophysical and geological models in a case study pertaining to copper-sulfide mineralization through an integrated 3D analysis of favorable target. The Ghalandar Skarn-Porphyry Cu Deposit, which is located in NW Iran, is selected for this research work. Three geophysical surveys of direct current electrical resistivity and in...
متن کاملDissociation of N2 in capture and ionization collisions with fast H + and N ions and modeling of positive ion formation in the Titan atmosphere
[1] Electron capture and ionization cross sections for protons and nitrogen ions incident on N2 are measured in the energy range 10–100 keV using time of flight (TOF) coincidence counting techniques. In the case of proton impact the formation of N2 + ions dominates for both electron capture and ionization channels at all energies, whereas for N ions, the N2 + formation dominates for electron ca...
متن کاملNOTE: Prelimineary Measurements of the Cryogenic Dielectric Properties of Water-Ammonia Ices: Implications for Radar Observations of Icy Satelites
considered as a pure rock–ice mixture (see Lorenz and Lunine 1997 for a discussion). It is possible that organic compounds (both liquid and I report preliminary measurements of the complex permittivsolid) are present on Titan’s surface—these may allow it to appear optiity of frozen aqueous ammonia solutions at liquid nitrogen cally bright yet defeat the volume scattering effects that would make...
متن کامل